Podría ayudar en la comprensión de la materia oscura en el Universo
Los científicos del Grupo de Física de Alta Energía (HEP) de la Universidad de Witwatersrand (Wits) en Johannesburgo predicen la existencia de un nuevo bosón que podrían ayudar en la comprensión de la materia oscura en el Universo.
Utilizando datos de una serie de experimentos que condujeron al descubrimiento y la primera exploración del bosón de Higgs en la Organización Europea para la Investigación Nuclear (CERN) en 2012, el grupo estableció lo que ellos llaman la hipótesis Madala, en la descripción de un nuevo Higgs, nombrado como el bosón Madala. El experimento se repitió en 2015 y 2016, después de dos años y medio año de apagado del Gran Colisionador de Hadrones (LHC) en el CERN. Los datos reportados por los experimentos del LHC en 2016 han corroborado las características de los datos que desencadenaron en el primer lugar la hipótesis Madala.
"Sobre la base de una serie de características y peculiaridades de los datos comunicados por los experimentos en el LHC y recogidos hasta finales de 2012, el grupo de ingenios de HEP en colaboración con científicos de la India y Suecia formuló la hipótesis de Madala", dice el profesor Bruce Mellado, líder del equipo del grupo de HEP en Wits.
El equipo del proyecto ingenios Madala se compone de aproximadamente 35 jóvenes estudiantes sudafricanos y africanos e investigadores que actualmente están contribuyendo a la comprensión de los datos que salen de los experimentos del LHC, junto con investigaciones fenomenológicas de teóricos tales como el Prof. Dr. Alan Cornell y Mukesh Kumar y apoyo en el ámbito de los instrumentos de medida del Prof. Elias Sideras-Haddad (todos de la Universidad de Wits).
La hipótesis describe la existencia de un nuevo campo de Higgs y, al igual que el bosón de Higgs. No obstante, cuando el bosón de Higgs en el modelo estándar de la física solamente interactúa con la materia conocida, el bosón Madala interactúa con la materia oscura, que hace alrededor del 27% del Universo.
"La física actual está en una encrucijada similar a los tiempos de Einstein y los padres de la mecánica cuántica", dice Mellado. "La física clásica no pudo explicar una serie de fenómenos y, como resultado, necesitaba ser revolucionada con nuevos conceptos, tales como la relatividad y la física cuántica, lo que llevó a la creación de lo que sabemos ahora de la física moderna".
La teoría que sustenta la comprensión de las interacciones fundamentales de la naturaleza de la física moderna se conoce como el modelo estándar de la física. Con el descubrimiento en 2012 del bosón de Higgs en el LHC, por el que fue otorgado el Premio Nobel de Física en el año 2013, se ha completado el modelo estándar de la física. Sin embargo, este modelo es insuficiente para describir una serie de fenómenos como la materia oscura.
El universo está hecho de materia y energía. La masa que podemos tocar, oler y ver, la masa que puede ser explicada por el bosón de Higgs, representa sólo el 4% del presupuesto de masa-energía del Universo. El resto de la masa en el Universo simplemente se desconoce, sin embargo, hace cerca del 27% del mundo que nos rodea. El siguiente gran paso para la física de las interacciones fundamentales es comprender ahora la naturaleza de la materia oscura en el Universo: ¿de qué está hecha? ¿Cuántos tipos diferentes de partículas hay? ¿Cómo interactúan entre sí? ¿Cómo interactúan con la materia conocida? ¿Qué pueden decirnos acerca de la evolución del Universo?
El descubrimiento del bosón de Higgs en el LHC del CERN ha abierto la puerta a hacer aún más descubrimientos innovadores, tales como la observación de los nuevos bosones que están vinculados a fuerzas y partículas antes desconocidas. Estas nuevas partículas pueden explicar de donde viene la materia desconocida en el Universo.
NOTA: El vídeo no está directamente relacionado con la noticia y se titula: "LHC Gran Colisionador de Hadrones como funciona"